Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Ann Hematol ; 102(4): 819-827, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2266810

ABSTRACT

Patients with lymphoid malignancies have impaired humoral immunity caused by the disease itself and its treatment, placing them at risk for severe coronavirus disease-19 (COVID-19) and reduced response to vaccination. However, data for COVID-19 vaccine responses in patients with mature T cell and NK-cell neoplasms are very limited. In this study of 19 patients with mature T/NK-cell neoplasms, anti-severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) spike antibodies were measured at 3 months, 6 months, and 9 months after the second mRNA-based vaccination. At the time of the second and third vaccinations, 31.6% and 15.4% of the patients were receiving active treatment. All patients received the primary vaccine dose and the third vaccination rate was 68.4%. In patients with mature T/NK-cell neoplasms, both seroconversion rate (p < 0.01) and antibody titers (p < 0.01) after the second vaccination were significantly lower than those in healthy controls (HC). In individuals who received the booster dose, patients had significantly lower antibody titers than those in HC (p < 0.01); however, the seroconversion rate in patients was 100%, which was the same as that in HC. The booster vaccine resulted in a significant increase of antibodies in elderly patients who had shown a response that was inferior to that in younger patients after two doses of vaccination. Since higher antibody titers and higher seroconversion rate reduced the incidence of infection and mortality, vaccination more than three times may have the advantage for patients with mature T/NK-cell neoplasms, especially in elderly patients. Clinical trial registration number: UMIN 000,045,267 (August 26th, 2021), 000,048,764 (August 26th, 2022).


Subject(s)
COVID-19 , Neoplasms , Aged , Humans , Antibodies , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , RNA, Messenger , SARS-CoV-2 , T-Lymphocytes , Vaccination
2.
Int J Hematol ; 117(4): 590-597, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2281175

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic affected healthcare quality and access worldwide and may also have negatively affected the frequency and outcomes of allogeneic hematopoietic stem cell transplantation (HSCT). We evaluated the effect of the pandemic on allogeneic HSCT in Japan. Our subjects were patients who received allogeneic HSCT during January 2018-December 2020 in Japan. We assessed differences in yearly number of allogeneic HSCTs and 1-year outcomes in 2020 versus both 2019 and 2018. The total number of patients who received allogeneic HSCT increased from 3621 patients in 2018 and 3708 patients in 2019 to 3865 patients in 2020. Some following changes in allogeneic HSCT methods were observed: patients were older, fewer patients received bone marrow transplantation, fewer patients received transplants from unrelated donors, fewer patients received transplants from matched donors, more patients received reduced-intensity conditioning, and fewer patients received anti-thymocyte globulin in 2020 compared with previous years. HSCT outcomes were not affected, as 1-year overall survival was not significantly different (65.8% in 2020, vs. 66.5% in 2019 and 66.4% in 2018). Our results suggest that we can maintain transplant care during the pandemic by controlling the spread of COVID-19 and modifying HSCT methods.


Subject(s)
COVID-19 , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Humans , Pandemics , Japan/epidemiology , COVID-19/epidemiology , Hematopoietic Stem Cell Transplantation/methods , Unrelated Donors , Transplantation Conditioning
3.
J Clin Virol Plus ; 2(4): 100109, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2273286

ABSTRACT

The Omicron emerged in November 2021 and became the predominant SARS-CoV-2 variant globally. It spreads more rapidly than ancestral lineages and its rapid detection is critical for the prevention of disease outbreaks. Antigen tests such as immunochromatographic assay (ICA) and chemiluminescent enzyme immunoassay (CLEIA) yield results more quickly than standard polymerase chain reaction (PCR). However, their utility for the detection of the Omicron variant remains unclear. We herein evaluated the performance of ICA and CLEIA in saliva from 51 patients with Omicron and 60 PCR negative individuals. The sensitivity and specificity of CLEIA were 98.0% (95%CI: 89.6-100.0%) and 100.0% (95%CI: 94.0-100.0%), respectively, with fine correlation with cycle threshold (Ct) values. The sensitivity and specificity of ICA were 58.8% (95%CI: 44.2-72.4%) and 100.0% (95%CI: 94.0-100.0%), respectively. The sensitivity of ICA was 100.0% (95%CI: 80.5-100.0%) when PCR Ct was less than 25. The Omicron can be efficiently detected in saliva by CLEIA. ICA also detects high viral load Omicron using saliva.

4.
Br J Haematol ; 2022 Nov 28.
Article in English | MEDLINE | ID: covidwho-2272889

ABSTRACT

Data for COVID-19 vaccine response in patients with immune thrombocytopenia (ITP) are very limited. In a study of 28 patients with ITP, anti-severe acute respiratory syndrome coronavirus 2 spike antibody titres were measured after vaccination. The seroconversion rate for ITP patients was 91.3%, comparable to that in healthy controls (HCs). However, the antibody titre in ITP patients was significantly lower than that in HCs and declined with ageing. Furthermore, the antibody titre in ITP patients who received a minimum prednisolone dose of at least 5 mg/day at any time-point at or after initial vaccination was lower than that in other patients.

5.
J Exp Med ; 220(2)2023 02 06.
Article in English | MEDLINE | ID: covidwho-2160842

ABSTRACT

In contrast to a second dose of the SARS-CoV-2 mRNA vaccine, a third dose elicits potent neutralizing activity against the Omicron variant. To address the underlying mechanism for this differential antibody response, we examined spike receptor-binding domain (RBD)-specific memory B cells in vaccinated individuals. Frequency of Omicron-reactive memory B cells increased ∼9 mo after the second vaccine dose. These memory B cells show an altered distribution of epitopes from pre-second memory B cells, presumably due to an antibody feedback mechanism. This hypothesis was tested using mouse models, showing that an addition or a depletion of RBD-induced serum antibodies results in a concomitant increase or decrease, respectively, of Omicron-reactive germinal center (GC) and memory B cells. Our data suggest that pre-generated antibodies modulate the selection of GC and subsequent memory B cells after the second vaccine dose, accumulating more Omicron-reactive memory B cells over time, which contributes to the generation of Omicron-neutralizing antibodies elicited by the third vaccine dose.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , Mice , Humans , Feedback , Memory B Cells , SARS-CoV-2 , COVID-19/prevention & control , RNA, Messenger , Antibodies, Neutralizing , Antibodies, Viral
8.
Br J Haematol ; 197(6): 691-696, 2022 06.
Article in English | MEDLINE | ID: covidwho-1714140

ABSTRACT

Data on the response to the COVID-19 vaccine in patients with myeloid malignancy, who are at severe risk in case of infection, have not emerged. In a study of 69 patients with myeloid malignancies, including 46 patients with acute myeloid leukaemia (AML) and 23 patients with myelodysplastic syndrome (MDS), anti-spike SARS-CoV-2 antibody titres were measured 3 months after the second mRNA-based vaccination. Seroconversion rates for AML and MDS were 94.7% and 100% respectively, with no significant difference from healthy controls (HCs). Patients with MDS showed a significantly lower antibody titre than that in HCs or AML patients. In AML patients, the antibody titres were comparable to those in HCs when treatment was completed, but lower in patients under maintenance therapy. The response to COVID-19 vaccine appears to be related to disease and treatment status. Patients with myeloid malignancies may be more responsive to vaccines than patients with lymphoid malignancies.


Subject(s)
COVID-19 , Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Myeloproliferative Disorders , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Leukemia, Myeloid, Acute/therapy , Myelodysplastic Syndromes/therapy , RNA, Messenger , SARS-CoV-2 , Vaccination
9.
Clin Infect Dis ; 73(11): e3986-e3987, 2021 12 06.
Article in English | MEDLINE | ID: covidwho-1612452
10.
Travel Med Infect Dis ; 44: 102210, 2021.
Article in English | MEDLINE | ID: covidwho-1525966

ABSTRACT

BACKGROUND: The third wave of the COVID-19 epidemic in the island of Hokkaido, the second largest island in Japan, began abruptly in October 2020. METHODS: We conducted a phylodynamic analysis of the SARS-CoV-2 genome sequences obtained from tertiary medical centers in the Greater Tokyo Area and Sapporo, the largest city in the island of Hokkaido, and genome sequences published by GISAID, an international SARS-CoV-2 genome database. We also analyzed the statistics on the person-nights of travelers in the island of Hokkaido from the Greater Tokyo Area in 2019 versus 2020. RESULTS: At least eight sub-lineages belonging to the B.1.1.214 lineage were introduced to the island of Hokkaido from the island of Honshu, the mainland of Japan from late July to November 2020, during the governmental travel promotion program. Five of the eight sub-lineages originated from the Greater Tokyo Area. Comparison of the monthly ratios of the person-nights of travelers in the island of Hokkaido from the Greater Tokyo Area in 2019 and 2020 revealed that the highest value occurred in October 2020. CONCLUSION: We contend that the Japanese governmental travel promotion program contributed to the introduction of the B.1.1.214 sub-lineages from the main island of Honshu to the island of Hokkaido, and drove the third wave in Hokkaido, even if we are unable to establish the causality.


Subject(s)
COVID-19 , Epidemics , Humans , Japan/epidemiology , Phylogeny , SARS-CoV-2
12.
Infect Dis Rep ; 13(3): 742-747, 2021 Aug 24.
Article in English | MEDLINE | ID: covidwho-1374333

ABSTRACT

The rapid detection of SARS-CoV-2 is critical for the prevention of disease outbreaks. Antigen tests such as immunochromatographic assay (ICA) and chemiluminescent enzyme immunoassay (CLEIA) can yield results more quickly than PCR. We evaluated the performance of ICA and CLEIA using 34 frozen PCR-positive (17 saliva samples and 17 nasopharyngeal swabs [NPS]) and 309 PCR-negative samples. ICA detected SARS-CoV-2 in only 14 (41%) samples, with positivity rates of 24% in saliva and 59% in NPS. Notably, ICA detected SARS-CoV-2 in 5 of 6 samples collected within 4 days after symptom onset. CLEIA detected SARS-CoV-2 in 31 (91%) samples, with a positivity of 82% in saliva and 100% in NPS. These results suggest that the use of ICA should be limited to an earlier time after symptom onset and CLEIA is more sensitive and can be used in situations where quick results are required.

13.
Clin Infect Dis ; 73(3): e559-e565, 2021 08 02.
Article in English | MEDLINE | ID: covidwho-1338669

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) has rapidly evolved to become a global pandemic, largely owing to the transmission of its causative virus through asymptomatic carriers. Detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in asymptomatic people is an urgent priority for the prevention and containment of disease outbreaks in communities. However, few data are available in asymptomatic persons regarding the accuracy of polymerase chain reaction testing. In addition, although self-collected saliva samples have significant logistical advantages in mass screening, their utility as an alternative specimen in asymptomatic persons is yet to be determined. METHODS: We conducted a mass screening study to compare the utility of nucleic acid amplification, such as reverse-transcription polymerase chain reaction testing, using nasopharyngeal swab (NPS) and saliva samples from each individual in 2 cohorts of asymptomatic persons: the contact-tracing cohort and the airport quarantine cohort. RESULTS: In this mass screening study including 1924 individuals, the sensitivities of nucleic acid amplification testing with NPS and saliva specimens were 86% (90% credible interval, 77%-93%) and 92% (83%-97%), respectively, with specificities >99.9%. The true concordance probability between the NPS and saliva tests was estimated at 0.998 (90% credible interval, .996-.999) given the recent airport prevalence of 0.3%. In individuals testing positive, viral load was highly correlated between NPS and saliva specimens. CONCLUSION: Both NPS and saliva specimens had high sensitivity and specificity. Self-collected saliva specimens are valuable for detecting SARS-CoV-2 in mass screening of asymptomatic persons.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Mass Screening , Saliva , Specimen Handling
14.
Travel Med Infect Dis ; 43: 102127, 2021.
Article in English | MEDLINE | ID: covidwho-1281580

ABSTRACT

BACKGROUND: Airport quarantine is required to reduce the risk of entry of travelers infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, it is challenging for both high accuracy and rapid turn-around time to coexist in testing; polymerase chain reaction (PCR) is time-consuming with high accuracy, while antigen testing is rapid with less accuracy. However, there are few data on the concordance between PCR and antigen testing. METHODS: Arrivals at three international airports in Japan between July 29 and September 30, 2020 were tested for SARS-CoV-2 using self-collected saliva by a screening strategy with initial chemiluminescent enzyme immunoassay (CLEIA) followed by confirmatory nucleic acid amplification tests (NAAT) only for intermediate range antigen concentrations. RESULTS: Among the 95,457 persons entering Japan during the period, 88,924 (93.2%) were tested by CLEIA, and 0.29% (254/88,924) were found to be SARS-CoV-2 antigen positive (≥4.0 pg/mL). NAAT was required for confirmatory testing in 0.58% (513/88,924) with intermediate antigen concentrations (0.67-4.0 pg/mL) whereby the virus was detected in 6.6% (34/513). This two-step strategy reduced the utilization of NAAT to one out of every 173 test subjects. The estimated performance of this strategy did not show significant increase in false negatives as compared to performing NAAT in all subjects. CONCLUSIONS: Point of care testing by quantitative CLEIA using self-collected saliva is less labor-intensive and yields results rapidly, thus suitable as an initial screening test. Reserving NAAT for CLEIA indeterminate cases may prevent compromising accuracy while significantly improving the logistics of administering mass-screening at large venues.


Subject(s)
COVID-19 , SARS-CoV-2 , Airports , Humans , Quarantine , Saliva
15.
Lancet Microbe ; 2(8): e397-e404, 2021 08.
Article in English | MEDLINE | ID: covidwho-1233658

ABSTRACT

BACKGROUND: Quantitative RT-PCR (RT-qPCR) of nasopharyngeal swab (NPS) samples for SARS-CoV-2 detection requires medical personnel and is time consuming, and thus is poorly suited to mass screening. In June, 2020, a chemiluminescent enzyme immunoassay (CLEIA; Lumipulse G SARS-CoV-2 Ag kit, Fujirebio, Tokyo, Japan) was developed that can detect SARS-CoV-2 nucleoproteins in NPS or saliva samples within 35 min. In this study, we assessed the utility of CLEIA in mass SARS-CoV-2 screening. METHODS: We did a diagnostic accuracy study to develop a mass-screening strategy for salivary detection of SARS-CoV-2 by CLEIA, enrolling hospitalised patients with clinically confirmed COVID-19, close contacts identified at community health centres, and asymptomatic international arrivals at two airports, all based in Japan. All test participants were enrolled consecutively. We assessed the diagnostic accuracy of CLEIA compared with RT-qPCR, estimated according to concordance (Kendall's coefficient of concordance, W), and sensitivity (probability of CLEIA positivity given RT-qPCR positivity) and specificity (probability of CLEIA negativity given RT-qPCR negativity) for different antigen concentration cutoffs (0·19 pg/mL, 0·67 pg/mL, and 4·00 pg/mL; with samples considered positive if the antigen concentration was equal to or more than the cutoff and negative if it was less than the cutoff). We also assessed a two-step testing strategy post hoc with CLEIA as an initial test, using separate antigen cutoff values for test negativity and positivity from the predefined cutoff values. The proportion of intermediate results requiring secondary RT-qPCR was then quantified assuming prevalence values of RT-qPCR positivity in the overall tested population of 10%, 30%, and 50%. FINDINGS: Self-collected saliva was obtained from 2056 participants between June 12 and Aug 6, 2020. Results of CLEIA and RT-qPCR were concordant in 2020 (98·2%) samples (Kendall's W=0·99). Test sensitivity was 85·4% (76 of 89 positive samples; 90% credible interval [CrI] 78·0-90·3) at the cutoff of 0·19 pg/mL; 76·4% (68 of 89; 68·2-82·8) at the cutoff of 0·67 pg/mL; and 52·8% (47 of 89; 44·1-61·3) at the cutoff of 4·0 pg/mL. Test specificity was 91·3% (1796 of 1967 negative samples; 90% CrI 90·2-92·3) at the cutoff of 0·19 pg/mL, 99·2% (1952 of 1967; 98·8-99·5) at the cutoff of 0·67 pg/mL, and 100·0% (1967 of 1967; 99·8-100·0) at the cutoff of 4·00 pg/mL. Using a two-step testing strategy with a CLEIA negativity cutoff of 0·19 pg/mL (to maximise sensitivity) and a CLEIA positivity cutoff of 4·00 pg/mL (to maximise specificity), the proportions of indeterminate results (ie, samples requiring secondary RT-qPCR) would be approximately 11% assuming a prevalence of RT-qPCR positivity of 10%, 16% assuming a prevalence of RT-qPCR positivity of 30%, and 21% assuming a prevalence of RT-qPCR positivity of 50%. INTERPRETATION: CLEIA testing of self-collected saliva is simple and provides results quickly, and is thus suitable for mass testing. To improve accuracy, we propose a two-step screening strategy with an initial CLEIA test followed by confirmatory RT-qPCR for intermediate concentrations, varying positive and negative thresholds depending on local prevalence. Implementation of this strategy has expedited sample processing at Japanese airports since July, 2020, and might apply to other large-scale mass screening initiatives. FUNDING: Ministry of Health, Labour and Welfare, Japan.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , Mass Screening/methods , SARS-CoV-2/genetics , Saliva , Sensitivity and Specificity
16.
Sci Rep ; 11(1): 4500, 2021 02 24.
Article in English | MEDLINE | ID: covidwho-1101683

ABSTRACT

Emerging evidences have shown the utility of saliva for the detection of SARS-CoV-2 by PCR as alternative to nasopharyngeal swab (NPS). However, conflicting results have been reported regarding viral loads between NPS and saliva. We conducted a study to compare the viral loads between NPS and saliva in 42 COVID-19 patients. Viral loads were estimated by the cycle threshold (Ct) values. SARS-CoV-2 was detected in 34 (81%) using NPS with median Ct value of 27.4, and 38 (90%) using saliva with median Ct value of 28.9 (P = 0.79). Kendall's W was 0.82, showing a high degree of agreement, indicating equivalent viral loads in NPS and saliva. After symptom onset, the Ct values of both NPS and saliva continued to increase over time, with no substantial difference. Self-collected saliva has a detection sensitivity comparable to that of NPS and is a useful diagnostic tool with mitigating uncomfortable process and the risk of aerosol transmission to healthcare workers.


Subject(s)
COVID-19/virology , SARS-CoV-2/genetics , Adult , COVID-19/diagnosis , COVID-19 Testing/methods , Diagnostic Tests, Routine/methods , Female , Humans , Male , Middle Aged , Nasopharynx/virology , Polymerase Chain Reaction/methods , RNA, Viral/genetics , SARS-CoV-2/isolation & purification , Saliva/virology , Specimen Handling/methods , Viral Load/methods
17.
J Infect Chemother ; 27(2): 410-412, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-894033

ABSTRACT

Rapid and simple point-of-care detection of SARS-CoV-2 is an urgent need to prevent pandemic. Reverse transcription loop-mediated isothermal amplification (RT-LAMP) can detect SARS-CoV-2 more rapidly than RT-PCR. Saliva is non-invasive specimen suitable for mass-screening, but data comparing utility of nasopharyngeal swab (NPS) and saliva in RT-LAMP test are lacking and it remains unclear whether SARS-CoV-2 could be detected by direct processing of samples without the need for prior RNA extraction saliva. In this study, we compared utility of saliva and NPS samples for the detection of SARS-CoV-2 by a novel RT-fluorescence LAMP (RT-fLAMP). The sensitivity and specificity of the RT-fLAMP with RNA extraction were 97% and 100%, respectively, with equivalent utility of NPS and saliva. However, sensitivity was decreased to 71% and 47% in NPS and saliva samples without RNA extraction, respectively, suggesting that RNA extraction process may be critical for the virus detection by RT-fLAMP.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , RNA, Viral/isolation & purification , SARS-CoV-2/isolation & purification , Fluorescence , Humans , Mass Screening/methods , Nasopharynx/virology , Point-of-Care Systems , RNA, Viral/analysis , Reverse Transcriptase Polymerase Chain Reaction/methods , Saliva/virology , Sensitivity and Specificity
18.
Int J Infect Dis ; 98: 16-17, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-624246

ABSTRACT

Rapid detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical for the diagnosis of coronavirus disease 2019 (COVID-19) and preventing the spread of the virus. A novel detection kit - the 2019 Novel Coronavirus Detection Kit (nCoV-DK) - halves the detection time by eliminating the steps of RNA extraction and purification. We evaluated the concordance between the nCoV-DK and direct PCR. The virus was detected in 53/71 specimens (74.6%) by direct PCR and in 55/71 specimens (77.5%) by nCoV-DK; the overall concordance rate was 94.4%: 95.2% for nasopharyngeal swab, 95.5% for saliva, and 85.7% for sputum. The nCoV-DK test effectively detects SARS-CoV-2 in all types of sample including saliva, while reducing the time required for detection, labor, and the risk of human error.


Subject(s)
Betacoronavirus/genetics , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Diagnostic Tests, Routine/methods , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , COVID-19 , COVID-19 Testing , Humans , Pandemics , Polymerase Chain Reaction , RNA, Viral/isolation & purification , SARS-CoV-2 , Saliva/virology , Sputum/virology
SELECTION OF CITATIONS
SEARCH DETAIL